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ABSTRACT

This paper proposes using a collection of parameterized waveforms, known
as a dictionary, for the purpose of medical image compression. These

waveforms, denoted as _, are discrete time signals, where 7 represents the
dictionary index. A dictionary with a collection of these waveforms is
typically complete or overcomplete. Given such a dictionary, the goal is to
obtain a representation image based on the dictionary. We examine the
effectiveness of applying Basis Pursuit (BP), Best Orthogonal Basis
(BOB), Matching Pursuits (MP), and the Method of Frames (MOF) methods
for the compression of digitized radiological images with a wavelet-packet
dictionary. The performance of these algorithms is studied for medical
images with and without additive noise.
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1 INTRODUCTION

We will discuss the advantages and disadvantages of

using four methods of decomposition for image

compression and restoration. The methods are Method of

Frames (MOF) [1], Best Orthogonal Basis (BOB) [3],

Matching Pursuit (MP) [4], and Basis Pursuit (BP) [2].

What these methods have in common is a requirement to

use waveforms from a "dictionary" to represent an image.

A dictionary, ¢:I), is simply a collection of parameterized

waveforms, Cv used as a basis for analysis. The parameter
y is dependent upon the dictionary type, e.g. if using a

frequency dictionary, then 7 is the indexing frequency. We

are interested in these methods because they offer a

flexible mechanism to customize a dictionary with known

waveforms. This would allow higher compression of

images using a customized dictionary.

2 METHOD OF FRAMES

Given a discrete dictionary of p waveforms (each of

length n) that are collected as columns of an nxp matrix,

• , the decomposition problem is:

OCt = f. (I)

The Method of Frames (MOF) uses either a wavelet

packet or cosine packet dictionary to pick out among all

solutions of equation (1), the solution whose coefficients
have the minimum L 2 norm:

minUa/12 subject to @a = f ( 2 )

The MOF solution is obtained by the use of a conjugate

gradient method [5] to solve the equation.

There are two key limitations with the Method of

Frames (MOF). The first is that MOF is not sparsity-

preserving. MOF tends to use all the basis functions

nonorthogonal to the signal yielding a very non-sparse

representation. If the signal can be represented by a
minimal set of the dictionary, then the coefficients found

by MOF are likely to be more than this minimal set. The
second limitation is that the MOF is resolution-limited.

Specifically, no object can be reconstructed with features

sharper than those allowed by the analysis and synthesis

operators. This has been shown in [2].

3 BEST ORTHOGONAL BASIS

The Best Orthogonal Basis (BOB) method originated
by Coifman and Wickerhauser [3,6] seeks to find a best



basisout of an orthogonal set of vectors relative to a

given signal. Thus, overall information cost is optimized.
This method uses a library of orthogonal waveforms that

has a natural dyadic tree structure. Utilizing this type of

structured dictionary makes it easy to construct orthogonal

bases by an O(N log N) search algorithm.

Given a library as a tree structure, the best basis of a

signalfis found by traversing the tree and selecting nodes

that correspond to a minimization of the entropy function.
The union of these nodes correspond to the best basis [3].

Shannon's entropy function is used as the selection
criteria

4 MATCHING PURSUIT

Mallat et. al. [4] has introduced an algorithm that can

provide a decomposition of signals that vary widely in

both time and frequency. It decomposes any signal into a

linear expansion of waveforms that are selected from a list

or dictionary of functions. It chooses a waveform that best

matches the signal structure of the signal at each iteration.

The remaining portion that is unmatched reprocessed at

the next iteration and matched to another signal in the

dictionary. This process continues until a specified error
tolerance is reached.

This algorithm can be expressed as a simple

decomposition by inner product of dictionary elements on
successive residuals.

m-I

R"

,-o (3)

R m is the residue vector after approximatingf at the rnth

iteration. In this algorithm, one begins by computing the

inner products in a dictionary. The elements of the

dictionary are chosen in a way such that

(4)

i.e. find the _r that produces the maximum inner

product.

The Matching Pursuit algorithm is greedy. This

means that it must compute all the inner products within

the dictionary to compute its solution. As a result, this

method will take longer to compute in overcomplete
dictionaries because it must first make a calculation for an

atom that would be the best fit on the data. After this

initial guess, the residue function could turn out to be

more complex and the MP algorithm continues in a
fashion to correct the errors from initial guess. This will

result in sub-optimal fitting of the other terms in the

decomposition. It will however do well with orthogonal
dictionaries

5 BASIS PURSUIT

Basis Pursuit (BP) determines a signal representation
such that the coefficients selected have a minimal L _ norm

[2]. BP differs from the Method of Frames only by the L 2

norm being replaced with the L _ norm; however, this

changes the form of the solution considerably. In BP, one

solves the problem:

minlltxIl_ subject to _tx = f ( 5 )

where • is an n×p matrix of waveforms where p>n

(overcomplete dictionary) and tx is the vector of

coefficients. The MOF requires the solution of a quadratic

optimization problem, and so the minimization is found

in the first derivative where the minimum can be easily

found. In contrast, Basis Pursuit requires the solution of a

convex optimization problem with inequality constraints.

Here it is necessary to use a conjugate gradient method to
find the solution.

Because of the non-differentiability of the L _ norm,

BP leads to decompositions that can have very different

properties from the Method of Frames. BP

decompositions can be much sparser. Became Basis

Pursuit always delivers a decomposition in an optimal

basis and not necessarily an orthogonal basis, it seems

better than the Best Orthogonal Basis method in resolving

nonorthogonal structures; however the cost to achieve this

is at the expense of greater computational complexity.

6 EXPERIMENTS

The ability of these methods for preserving the

resolution in the reconstructed images with the wavelet

packet dictionary for and MRI image, X-ray, and a
photograph are observed. Initial results show MP with a

compression ratio of 100:1 while the other methods show

ratios from 16:1 to 30:1. From the figures, the

reconstruction from MOF, BOB, and BP looks good to

the naked eye. MP did not do well in these examples. This
also shows that BP does not offer much of an

improvement over MOF even with the added algorithmic

complexity. MP does not perform well to reconstruct

images as the other methods, but does yield superior

compression ratios. The Peak-Signal-to-Noise Ratio
(PSNR) is used to give a qualitative analysis of the

images and their reconstruction [7]. The PSNR is given

by:

PSNR= lOlogto(-_) (6)

D is the Mean Square Error (MSE), E{(x-y)2}.



7 CONCLUSION

Investigation into applying dictionary methods to the
problem of image compression has produced promising
results. The characteristics of wavelets which include

"compact support", overcomes some of the limitations of
image compression seen in traditional approaches. In
contrast, traditional methods such as Fourier based

dictionaries provide an effective means for representing
signals that are smooth in nature or do not contain abrupt
changes or variations; however, these types of dictionaries
are not sufficient for representing a signal that may have
many irregularities, possess unique features, or exhibits
transient behavior [4]. As a result, wavelet dictionaries
have been shown to perform well as or better than standard

approaches. Table 1 and Chart 1 show the Peak Signal-to-

Noise Ratio of the images in tabular and graphical form
respectively for each method. The methods showing the
best results, Basis pursuit and Best Orthogonal Basis are
very close. Since the complexity of MOF is

O(n log(n)), BP is (3(n._log (n)), MP is

quasi O(n log (n)), and BOB is O(n log(n)), the

complexity may become a factor in the selection of the
best method.
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Chart 1 - Peak Signal-to-Noise Ratios of four methods on four different images.
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Figure I- Image A-Original picture of breast.
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Figure 2 - Image A -Method of Frames reconstruction
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Figure 3 - Image A -Basis Pursuit Reconstruction
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Figure 4 - Image A -Matching Pursuit Reconstruction
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Figure 5 - Image A -Best Orthogonal Basis
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